

Surgery for the Acute Abdomen

Septic Peritonitis

Dogs

- ~60% gastrointestinal origin
 - Foreign body (linear FB is the most common ~40% of cases)
 - Post-op dehiscence
- Genitourinary tract ~23%
- Hepatobiliary ~15%
- Others
 - LN abscesses
 - Penetrating trauma
 - Migrating grass awn
- Reported mortality 20-46%

Cats

- ~47% gastrointestinal (50% are due to perforated neoplastic lesions)
- ~15% due to trauma
- ~14% No obvious cause
- Others
 - Urinary
 - Pancreatic
 - Hepatobiliary
- Cats may present without abdominal pain (~60%) and bradycardia (~16%)
- Mortality rate 30%

Clinical signs

- Non-specific (lethargy, anorexia, pyrexia, abdominal pain)

Diagnostics

- May stop with imaging if the problem is already identified
 - pneumoperitoneum, GI obstruction, intussusception, trauma
- Abdominocentesis
 - Detection of intracellular bacteria (Gold Standard)
 - Look for neutrophil degeneration which is dependent on the amount and virulence of toxins in exudate
- Plasma vs effusion glucose
 - If effusion glucose is >2.1 mmol/L lower than plasma it is suggestive of septic peritonitis

- If glucose is very low in the effusion septic peritonitis is more likely

Surgical therapy

- Treat underlying cause – Source control!
- Take samples for biopsy
- Take swabs for aerobic and anaerobic culture and sensitivity
- Lavage generously with large volume warm balanced electrolyte solution
 - At least 100mL/kg
 - No intra-peritoneal antibiotics
 - The efficacy is no better than systemic and it is irritating to the organs
 - Aspirate/suction as much fluid as possible
- Consider the need for ongoing drainage
 - When to place a drain?
 - Have you achieved definitive source control?
 - Do you anticipate much ongoing effusion?
 - Do you expect uncomplicated healing?
 - Active draining – closed suction
 - Jackson-Pratt or Blake drains
 - Advantages: Closed system, relatively cheap, fluid samples for cytology
 - Disadvantages: No opportunity to re-debride
 - Open abdominal drainage
 - Abdominal incision left partially open to allow for fluid drainage for 2-5 days
 - Advantages: improved drainage, ability to re-explore, discourages anaerobic growth
 - Disadvantages: cost, monitoring, hypoproteinemia, nosocomial infections, pain
- Consider post-operative feeding tube

Antimicrobial Use

- Always perform a culture and sensitivity
- MDR nosocomial isolates are common
- Resistant isolates
 - 71% to ampicillin, 43% to ciprofloxacin, 39% to cefazolin
 - Fluoroquinolones high rate of resistance development
- Higher mortality in cases with inappropriate antimicrobial selection and polymicrobial infections

Hemoperitoneum

- Traumatic – often nonsurgical

- Blunt (HBC)
- Penetrating
- Non-traumatic (spontaneous) – usually surgical
 - Neoplasia
 - Dogs = 80%
 - Spleen
 - Cats = 46%
 - Liver (benign and malignant)
 - Other organs = kidneys and adrenal glands
 - Most common neoplasia: Hemangiosarcoma
 - Dogs 88% of spleen malignancies
 - Cats 60%
 - Splenic hematoma
 - Coagulopathy
 - Migrating FB
 - Ruptured abscess
 - Liver lobe torsion
 - Splenic torsion
 - GDV

Splenic Hemoperitoneum

- Small dog size (<20kg) was associated with lower incidence of splenic hemorrhage compared to large dogs
- Hemangiosarcoma was found in 67.5% of large dogs and 50% of small dogs
- Benign lesions 15% in small and large dogs
- Ventricular arrhythmias are more common in hemoperitoneum cases and are associated with an increased risk of mortality

Fluid analysis for a Hemoperitoneum

- Abdominocentesis or diagnostic peritoneal lavage
- Blood that has been in contact with the peritoneum for 45 minutes does not clot since it is free of platelets
- Evaluate PCV/TS of fluid
 - Abdominal fluid vs Peripheral PCV is usually similar or sometimes higher
 - Often some hemolysis in plasma

Treatment

- Stabilize
 - IVF – shock rates

- Blood products
- Consider abdominal wrap/compressive bandage
- Surgery
 - Difference between traumatic and spontaneous hemoperitoneum

Splenectomy

- Ligation of Splenic and Short Gastric Arteries
 - Pros
 - Fewer ligatures
 - Possibly faster
 - Cons
 - Risks damaging pancreatic blood supply
 - Reduced blood supply to stomach
- Hilar splenectomy
 - Transect vessels directly at the hilus
 - Suture, hemoclips, vessel sealing device
 - Excise omental adhesions (can have tumor nodules)
 - Pros
 - Preserves collateral blood supply to nearby tissues
 - Smaller diameter vessels – less risk of significant hemorrhage
 - Cons
 - Slower if using sutures for ligation
 - Potentially closer to neoplastic tissue in the spleen

Splenic torsion

- Presentation
 - Malaise to acute collapse
 - Splenomegaly palpable in most cases
 - Occlusion of splenic vein first results in continued enlargement and sequestration of blood
 - Abdominal radiographs reduced abdominal detail +/- splenomegaly
 - Abdominal ultrasound: hypoechoic spleen with decreased blood flow in splenic vessels
- Treatment
 - Splenectomy
 - DO NOT de-rotate the spleen > reprofusion injury
 - Caution with the pancreas and blood supply to the left limb of the pancreas

Mesenteric torsion

- Presentation
 - Acute cardiovascular collapse
 - Majority of portal blood flow is reduced
 - Severe abdominal pain/collapse/recumbency
 - +/- abdominal distention
 - Radiographs show a diffuse dilation of bowel
- Treatment
 - De-rotate and resect the necrotic portions
 - Often entire intestines are ischemic
 - Reperfusion injury is still of concern
 - Acute emergency with a grave prognosis

Uroabdomen

- Medical not a surgical emergency
- *Usually* non-septic but possible
- Peritonitis is not as severe compared to septic cases
- Significant metabolic consequences

Pathophysiology

- Urine is typically hyper-osmolar to ECF
 - Fluid shifts into the abdominal cavity
- Small solutes (urea) and electrolytes (K^+) rapidly shift down their concentration gradient into the ECF
- Large molecules (creatinine) persist and provide an osmotic gradient
- Dehydration
 - Third spacing of fluid
 - Vomiting and lack of intake
- Azotemia is commonly seen
- Hyperkalemia in 31% of dogs and 54% of cats
- Chemical peritonitis occurs worsening 3rd spacing and may lead to ileus and pain
- Leakage is typically from the bladder 56%
 - 26% urethra
 - 5% kidney
 - 2% bladder and kidney
 - 2% from ureter
 - 9% undetermined

Clinical signs

- Hematuria, stranguria
- Anuria (many can still urinate)
- Vomiting
- Abdominal distension
- Swollen, cellulitis
- Dehydration
- Lethargy, mental depression
- Trauma patients without uroperitoneum have similar signs
- Diagnosis can be delayed without diligent work-up

Etiology

- Trauma in 85% of cases
 - Dogs
 - Blunt trauma
 - Pelvic fractures
 - Cats
 - Blunt trauma (56%)
 - Urethral catheterization (32%)
 - Bladder expression (9%)
 - Much less common in cats
 - Post-cystotomy, nephrotomy
 - Rupture secondary to obstruction, neoplasia
 - Iatrogenic (inadvertent ureter trauma)

Diagnosis

- Measure effusion and peripheral blood K^+ and creatinine
 - Ratios above 2:1 for creatinine
 - Ratios above 1.4:1 in dogs and 1.9:1 in cats for potassium
 - Dogs with uroabdomen usually have even higher values in effusion >4:1
- Radiography
 - Pain radiography
 - Loss of serosal detail
 - Ability to see a full bladder does not always confirm the urinary tract is completely intact
 - Pelvic fractures
 - More likely to have urinary tract trauma
- Contrast imaging
 - Positive contrast retrograde cystourethrogram
 - Contrast study of choice for Lower UT

- Fluoroscopic retrograde positive contrast study
 - Easier to catch dynamic leaks
- IV excretory urogram
 - Upper UT trauma
- Antergrade pyelogram
 - Upper UT trauma
- Ultrasound +/- contrast cystography (microbubble)
- Computed tomography
 - Usually rads are enough, CT is pricy
 - Harder to catch dynamic leaks like with radiographs/fluoroscopy

Surgical Treatment

- Repair of bladder wall/urethral defects
- Urethral anastomosis
- Radical cystectomy
 - Complications: Pollakiuria, dysuria
- Urethral reimplantation