

VET 433B GI: Dysphagia (Swallowing Impairment) and Regurgitation

Classifying Dysphagia *three categories

Oropharyngeal	Esophageal *most common*	Gastroesophageal
<p>Oral: Cleft Palate, Dental Disease/Pain, tongue disorder</p> <p>Pharyngeal: Severe pharyngeal weakness due to a polyneuropathy or polymyopathy, myasthenia gravis (junctionopathy)</p> <p>Cricopharyngeus: Muscle in the upper esophageal sphincter</p> <p>Swallowing impairment will begin within seconds of swallowing the bolus</p>	<p>Megaesophagus</p> <p>Stricture</p> <p>Neoplasia</p> <p>Esophagitis</p>	<p>Sliding hiatal hernia</p>

Breed Predisposition

Bouvier: Congenital laryngeal paralysis, muscular dystrophy (crazy high CK – hyperCKemia)

German Shepherd

Shar Pei

Brachycephalic: French Bulldog, Boston Terriers, English Bulldogs Pugs

- Hiatal hernia *made worse with BOAS due to increased negative intrathoracic pressure (vacuum effect)
- Brachycephalic Obstructive Airway Syndrome (BOAS)
 - Stenotic nares
 - Elongated soft palate
 - Everted laryngeal saccules
 - Hypoplastic trachea
 - Persistent laryngeal tissue
 - Macroglossia (big tongue)

Newfoundland and Boxers: Inflammatory myopathy (high CK)

What should you ask about when evaluating a dysphagic patient?

Dog Swallow Assessment Tool (DogSAT)

1. Difficulty with solids vs liquids
 - Regurgitates with kibble: probably a stricture in the esophagus (structure/anatomical) could be a bone that caused trauma or reflux under general anesthesia > esophagitis > stricture
 - Can likely drink water normally
 - Regurgitates with water, ok with kibble: functional or motility disorder
2. Is the dysphagia intermittent or progressive
3. Temporal pattern with swallowing
 - Explained in detail by owner, videos are great for this!
4. Recent general anesthesia
 - Regurgitation leading to esophagitis and the formation of a stricture
5. Age of onset
 - Congenital vs acquired
6. Dysphonia
 - Change in pitch of bark
 - Polyneuropathy, polymyopathy, junctionopathy
7. Odynophagia
 - Painful swallowing
 - Severe esophagitis *top differential
 - Esophageal or pharyngeal foreign body
8. Medications
 - Doxycycline, clindamycin: can cause strictures
 - NSAIDS in human literature

Diagnostic approach

1. Observe the animal eating and drinking
2. Physical exam
3. Neurological exam +/- especially if there is dysphonia
4. CBC and chemistry panel (including CK)
5. Survey radiographs (3v thorax, 1v cervical)
6. Esophagram vs videofluoroscopy
 - Dynamics and timing of the swallow
 - Videofluoroscopy: Allows us to evaluate function
 - Esophagram evaluates structure not function
 - Falls short in the evaluation of timing, dynamics, and coordination of sphincter opening

7. +/- Esophagoscopy

- Downside is that the patient has to be under general anesthesia
- Risk benefit ratio needs to be evaluated
- Does not evaluate function, only structure

8. CT, MRI

9. Electrodiagnostics (EMG, NCV)

10. Muscle biopsy

Don't forget the importance of a thorough Oral Exam!

Large tongue in puppy – May be muscle dystrophy (causes macroglossia)

Glossitis: Systemic Lupus Erythematosus

Cleft Palate

Case: MMM

Dog presents for not being able to open his mouth

TMJ with severe osteomyelitis, OSA, chondrosarcoma

Masticatory muscle myositis

- Fibrosis and scarring of the muscles of mastication
- Under GA, dog's mouth will not be able to be opened

DIFFERENT than a trigeminal neuropathy – Dog would have an open mouth that doesn't want to close

Muscles of mastication

Pterygoid

Masseter

Temporalis

Digastricus

These muscles have **type 2M myofibers** *antibody test can test for antibodies against these fibers and help with the diagnosis of masticatory muscle myositis

Can have a negative test in the late stage of this disease due to the lack of measurable antibodies, you only have fibrosis/sacring left of the muscles

Gold standard is biopsy of the muscles of mastication – helps with prognosis depending on the degree of muscle fibrosis/scarring. You may be able to help with some of the inflammation

Acute phase: Severe pain, swollen muscles due to inflammation – can treat and have an ok prognosis

Chronic phase: fibrosis and muscle scarring – poor prognosis

Immunosuppressive therapy prednisone with cyclosporine

- Helps mitigate the pred side effects (muscle atrophy etc.)
- Cyclosporine takes longer to kick in so the pred helps get things under control faster

Esophageal Disorders

- Motility
 - MegAESOPHAGUS *most common
 - Esophageal dysmotility
 - Myopathy, Polyneuritis, Junctionopathy
 - Esophagitis (severe)
- Anatomic and Structural
 - Vascular ring anomaly
 - Strictures
- GERD
 - Gastroesophageal Reflux Diseases
- Infectious *not common
 - Pythium
 - Candida
- Neoplastic
 - More common in brachycephalic dogs due to reflux

Case Study: Miniature longhaired Dachshund with a lifelong history of severe dysphagia with gagging, repeated attempts to swallow, coughing, and nasopharyngeal reflux. Worse when drinking water

Cricopharyngeus Muscle Dysfunction: **Disorder of the Upper Esophageal Sphincter**

Oropharyngeal category of dysphasia

- Achalasia – Failure of the upper esophageal sphincter to completely relax/open
 - Idiopathic hypertrophy of the cricopharyngeal muscle

- Breeds
 - Miniature longhaired Dachshunds, Maltese, Toy Breeds
- Asynchrony- Inappropriate timing in opening of upper esophageal sphincter in relation to pharyngeal contraction
 - Idiopathic, thought to be a neuropathy
 - Breeds
 - Golden Retrievers
- Clinical signs
 - Dysphagia within seconds of swallowing
 - Repeated swallowing attempts
 - Dysphagia usually worse with water
 - FYI: If it was worse with food, it would more likely be structural
 - Nasal reflux
 - Cleft Palate may be a ddx
 - Coughing
 - Bloating
 - Gulpng down massive amounts of air
- Diagnosis
 - Video fluoroscopy swallow study
 - Cannot diagnose with an esophagram, you need a dynamic study
- Treatment
 - Open surgical myotomy
 - Not a benign surgery, complex and can make the issue worse if done incorrectly
 - Does not have a great outcome, even when done by qualified surgeons
 - Botox injection of CP muscle
 - Not a permanent solution and requires anesthesia
 - Causes temporary weakness of the CP muscle
 - 15 Units injected in 3 sites directly in the CP muscle
 - Dog can become tolerant to Botox over time
 - Balloon dilation of UES
 - Done in some dogs but is not the go-to procedure
 - Enteral feeding tube
 - Bypasses the esophagus
 - Not fixing the problem, bypassing the problem and patient can still have issues with the saliva

Case Study: Onset of acute dysphagia, regurgitation, ptyalism, and dysphonia

Megaesophagus seen on thoracic radiographs

- Acquired due to age of onset
- Now think primary vs secondary
 - Primary cause / Idiopathic
 - Idiopathic ~ 52%
 - One in two dogs!
 - Secondary
 - Myasthenia Gravis ~ 24%
 - Most common by far as the secondary cause of megaesophagus
 - Ach receptor antibody test is the gold standard
 - Done in RTT or SST great test!
 - If the test is normal but >0.3 , **test again** in a week or few to see if it raises! Don't need to retest if 0.1 or 0.2
 - Cat reference range is different than in the dog (0.3 vs 0.6)
 - Treat with pyridostigmine
 - Megaesophagus may not go away (~50% have persistent megaesophagus) even if the other clinical signs of MG resolve
 - Neuromuscular Disease ~ 9%
 - Esophageal Foreign Body ~ 7%
 - Vascular Ring Anomaly ~ 3%
 - Esophageal Neoplasia ~ 2%
 - Addison's Dz $\sim < 1\%$
 - GDV ~1%
 - Hiatal Hernia ~ 1%

Megaesophagus and Myasthenia Gravis

- Two forms: Congenital vs Acquired
 - Congenital
 - Rare, do not usually see focal megaesophagus
 - Not autoimmune
 - Deficiency in receptors, need a muscle biopsy to diagnose, NOT serology
 - Acquired
 - Autoimmune
 - 40% only have megaesophagus or dysphagia in the absence of other MG signs (generalized weakness etc)
 - 45% have severe generalized megaesophagus with weakness
 - 10% have mild generalized MG without megaesophagus
 - 5% acute fulminating

- Treatment
 - Modify consistency of diet and water
 - Feed from elevated position (gravity-assisted feeding)
 - Bailey Chair
 - Some dogs have abnormal relaxation of the LES causing profound retention of the bolus (hours on end)
 - Can regurgitate hours after a meal
 - Gastrostomy feeding tubes with intractable aspiration
 - Bypasses the esophagus
 - Fenestrated esophagostomy tube
 - Suction up saliva and secretions sitting in the esophagus
 - Pharmacological agents to reduce LES tone
 - Surgical options to reduce LES tone
 - More common in human medicine

Review on Approaching Megaesophagus

- Congenital vs Acquired
- Acquired is much more common
 - Is it primary or secondary?
 - ACh receptor antibody testing! Increase can lag so you may need to retest
- 40% of dogs with MG have acquired mega esophagus have that as the only sign
- 45% have both megaesophagus and clinical signs (weakness etc.)

Managing Esophageal Achalasia-Like Syndrome

- LES opens when you initiate a swallow
- In dogs with esophageal Achalasia-Like Syndrome this sphincter doesn't relax normally
- Smooth muscle in the canine esophagus is only present in the lower esophageal sphincter, the whole esophageal body is striated muscle
 - Drugs are used to relax this muscle
- In the cat, the distal 1/3 and lower esophageal sphincter are smooth muscle
- Drugs to reduce LES tone
 - Sildenafil @ 1mg/kg q 8hrs
 - Bioavailability is all over the map because we don't know when the medication will reach the stomach if the esophagus is not functioning correctly
 - Also true while giving abx
 - Botulinum toxin injection into LES

- Dog needs to be anesthetized every tx and you need special instruments
- Avoid metoclopramide and cisapride
 - Drugs that tighten the LES!
 - Super counterintuitive
 - Should only used for sliding hiatal hernias

Chronic history of “bringing up food”

What would you do?

- Vomiting vs Regurgitation
 - Regurgitation seen in video of Boston Terrier
 - Likely a hiatal hernia
 - LES should be below the level of the diaphragm
 - Diagnosed via video fluoroscopic swallow study
 - More likely to capture event since this process takes about 20 min
 - Can't rule out if radiographs are normal
 - 7-20% of survey radiographs may catch a view that shows a hiatal hernia (nanosecond snapshot of the chest)
 - Can also do endoscopy of the stomach and perform a retroflexion and look up at the opening of the hiatus
 - Esophageal dysmotility
 - **ESOPHAGITIS is a common cause**

Surgical management of Hiatal Hernia

- L-sided gastropexy
- Esophagopexy
- Diaphragmatic hiatal plication
 - Outcome post-surgery is not great, usually see an improvement but not a complete resolution
 - Likely due to the fact that the mechanical surgery does not alter the stomach anatomy at the gastroesophageal junction
 - Antiquated procedure

Esophagitis

- Most common causes of esophagitis
 - Secondary to general anesthesia
 - Median 7.5 days post-anesthesia
 - Presumed GRE

- Incidence of GRE in dogs during anesthesia varies from 16-55%
- Reduction of LES pressure, dependent on the type of medications used
- Morphine, atropine, acepromazine, thiopental, xylazine, isoflurane
- Loss of swallow reflux, saliva contains bicarb which helps neutralize acid
- Loss of peristalsis, refluxed contents stay in the esophagus and can cause irritation, especially when the pH is below 4.0
- pH below 4.0 conducive to converting pepsinogen to pepsin, pepsin + acid is catastrophic
- Should pretreat all dogs with PPI before surgery, especially brachycephalics
 - Not much of a downside but can save patients in the long-run
- Pill-induced esophagitis
 - Doxycycline
 - Clindamycin
 - NSAIDS
- Vomiting gastric contents
- Secondary to foreign body injury
- Secondary to ingestion of caustic material
 - Not super common in animals, more common in people ingesting lye super basic and very caustic to the esophagus

Goal is to prevent esophageal strictures!

- Treatment
 - Esophageal Balloon Dilation
 - Success rate of 70-80%
 - Median of 2-4 dilation procedures
 - Each time requires general anesthesia
 - Triamcinolone injection in four quadrants
 - Corticosteroid can help reduce fibrosis / scarring and decrease the frequency of restructure
- **Management of esophagitis**
 - **Gastric acid suppressants**
 - Proton pump inhibitors
 - Omeprazole, esomeprazole, pantoprazole, etc
 - Much better than H2-receptor antagonists
 - H2-receptor antagonists
 - Famotidine
 - Sucralfate
 - Not routinely used in people!

- Dissociated into sulfated sucrose and polyaluminum hydroxide in an acidic environment
- Bind to proteins electrostatically
- Stimulates PG production
- Absorption of bile salts
- Inactivation of pepsins
- May cause constipation and inhibit the absorption of other drugs
- Suspension is much better than the tablets crushed and put in water
 - Viscosity is different and the suspension is much better at sticking to the stomach mucosa
 - Need to study retention times!

- Prokinetics
 - Cisapride
 - 5HT-4 agonist (more potent than metoclopramide)
 - Increased LES sphincter tone – works on smooth muscle
 - Stimulates gastric emptying
 - Stimulates distal esophageal motility in cats, humans, and guinea pigs (smooth muscle in distal esophagus)
 - Gastroesophageal reflux
 - Esophagitis
 - Metoclopramide
 - Goal is to **tighten** LES and prevent reflux from the stomach into the esophagus
 - Assuming the dog does NOT have megaesophagus
- Dietary fat restriction
 - Fat can delay gastric emptying in the dog
- PEG tube
 - Not placed consistently
 - Usually try to alter food consistency first
 - Vicious lidocaine jell to help with pain +/- opioids